${\bf Table~14.~Calculated~compositions~of~liquid~fractionates~and~crystalline~residua~derived~from~the~high-alumina~quartz~tholeiite~and~basaltic~andesite~compositions~at~18~kb}$

Composition Temperature Nature and estimated % of crystals	High-alumina quartz tholeiite			Basaltic andesite		
		1,330° C 15% cpx	1,300° C 50% cpx 10% plag 5% ga		1,280° C 10% cpx	1,250° C 25% cpx 10% plag 1% ga
	Initial liquid			Initial liquid		
Liquid fractionate						
	52.9	53.8	58.1	56.4	57.1	58.8
SiO_2 TiO_2	1.5	1.5	1.8	1.4	1.4	1.7
Al_2O_3	16.9	17.7	17.8	16.6	17.1	15.9
	0.3	0.4	0.9	3.0	3.3	4.7
${ m Fe_2O_3} \ { m FeO}$	7.9	8.1	9.0	5.7	5.3	4.5
MnO	0.2	0.2	0.5	0.1	0.1	0.2
	7.0	5.9	2.1	4.3	3.4	2.6
MgO	10.0	9.0	4.0	8.5	7.8	6.4
CaO	2.7	2.9	3.7	3.0	3.2	3.2
Na ₂ O	0.6	0.7	1.6	1.0	1.1	1.5
K ₂ O	100.0	100.2	99.5	100.0	99.8	99.5
Mol. Prop.	2000					
100 MgO	60.4	55.4	27.6	47.7	42.2	34.8
$\rm MgO + FeO_{Total}$	00.1	00.1	2110	2111		
CIPW norm						
Qz	1.3	3.0	13.1	10.7	12.4	17.6
Or	3.5	4.2	9.4	5.9	6.5	8.8
Ab	22.8	24.6	30.7	25.4	27.1	27.1
An	32.2	33.2	19.9	28.9	29.0	24.6
Diop	14.2	9.4	2.7	10.8	14.7	5.6
Нур	22.6	22.5	19.0	11.3	9.5	5.7
Ol	_	_	_			-
Mt	0.4	0.6	1.3	4.3	4.8	6.8
Π m	2.8	2.8	3.4	2.7	2.7	3.2
Crystal residuum						
		50.1	48.0		50.5	52.1
SiO_2 TiO_2		1.4	1.3		1.0	1.0
Al_2O_3		16.4	12.3		11.7	17.8
FeO		7.3	6.9		9.7	7.8
MnO		tr				0.1
MgO		9.7	13.5		12.2	7.3
CaO		13.2	15.4		14.8	12.2
Na ₂ O		2.2	1.4		1.2	2.6
K_2O		0.1	_			0.1
		100.4	98.8		101.1	101.0
Mol Prop.						
100 MgO						
		70.3	77.7		69.2	62.5
MgO + FeO						

Table 15. Calculated approximate composition of liquid fractionate and crystalline residuum from the andesite composition at 18 kb

Note: Suitable electron microprobe analyses of garnet and plagioclase could not be obtained at 18 kb. However as an approximation the composition of the garnet from a 22.5 kb run is taken. The composition of the plagioclase is estimated as ${\rm Or_5Ab_{65}An_{30}}$ by comparison with plagioclase in the basaltic andesite at 18 kb and assuming that the albite enrichment trend with increasing pressure continues to 18 kb in the plagioclases crystallizing from the andesite (see p. 129).

Temperature		1,260° C	Temperature	1,260° C		
Nature and estimated % of crystals	Initial liquid	12% plag 3% ga	Nature and estimated % of crystals	Initial liquid	12% plag 3% ga	
Liquid fractionate			CIPW norm		F TENE	
SiO,	62.2	62.8	Qz	15.5	18.7	
TiO,	1.1	1.3	Or	13.6	15.4	
Al ₂ O ₃	17.3	16.4	Ab	27.9	22.0	
Fe_2O_3	0.3	0.4	An	25.7	25.4	
FeO	5.9	6.3	Diop	0.2	0.7	
MnO	0.1	0.1	Hyp	14.8	14.8	
MgO	2.4	2.4	Ol	_	- 100	
CaO	5.2	5.3	Mt	0.4	0.6	
Na ₂ O	3.3	2.6	Ilm	2.1	2.5	
K ₂ O	2.3	2.6				
Mol. Prop.	100.1	100.2	Crystal residuum			
			SiO ₂		58.9	
100 MgO	41.0	39.1	TiO_2		0.2	
$MgO + FeO_{Total}$			Al_2O_3		22.5	
and a recording			\mathbf{FeO}		3.5	
		- 110	MnO		0.1	
		- 5.1	MgO		2.2	
			CaO		4.4	
		710.0	Na ₂ O		7.1	
		- TA	K ₂ O		0.8	
		- 0.9	Mol Prop.		99.7	
			$\frac{100 \text{ MgO}}{\text{MgO} + \text{FeO}}$		52.9	

and alumina and also in iron (except where crystallization is greater than 30%) but there is marked depletion in magnesia. Thus the fractionating liquids show a large drop in the $\frac{Mg}{Mg+Fe}$ ratio. In contrast to the trends at 18 kb, the liquid fractionation trends at 27—36 kb (Tables 16—20) show significant enrichment in silica and alkalies, alumina remains approximately constant, and iron and magnesium are both depleted. The $\frac{Mg}{Mg+Fe}$ ratio shows a slight decrease, so that there is some iron enrichment relative to magnesia. This effect is probably accentuated by the experimental conditions where there is some iron loss to the platinum capsule during a run. This factor will mean that the iron content of the mafic phases as analyzed will be slightly less than expected for similar crystals in equilibrium with a melt without iron loss.